05 - Logging
Demonstrates MCP logging capabilities with various levels and patterns for debugging and monitoring.
Running the Example
- Run:
python examples/05_logging.py
- Set
log_level="DEBUG"
inMCPApp
to see debug logs
Source Code
#!/usr/bin/env python
"""
05_logging.py - MCP logging capabilities
This example demonstrates the various logging levels and patterns
available through the MCP protocol for debugging and monitoring.
To run:
python 05_logging.py
To see debug logs:
Set log_level="DEBUG" when creating MCPApp
"""
import asyncio
import time
import traceback
from typing import Annotated, Optional
from arcade_mcp_server import Context, MCPApp
# Create the app with debug logging
app = MCPApp(name="logging_examples", version="0.1.0", log_level="DEBUG")
@app.tool
async def demonstrate_log_levels(
context: Context, message: Annotated[str, "Base message to log at different levels"]
) -> Annotated[dict, "Summary of logged messages"]:
"""Demonstrate all MCP logging levels."""
# Log at each level
levels = ["debug", "info", "warning", "error"]
logged = {}
for level in levels:
log_message = f"[{level.upper()}] {message}"
await context.log(level, log_message)
logged[level] = log_message
return {"logged_messages": logged, "note": "Check your MCP client to see these messages"}
@app.tool
async def timed_operation(
context: Context,
operation_name: Annotated[str, "Name of the operation"],
duration_seconds: Annotated[float, "How long the operation takes"] = 2.0,
) -> Annotated[dict, "Operation timing details"]:
"""Perform a timed operation with detailed logging."""
start_time = time.time()
# Log operation start
await context.log.info(
f"Starting operation: {operation_name} (expected duration: {duration_seconds}s)"
)
# Simulate work with progress logging
steps = 5
for i in range(steps):
await context.log.debug(f"Progress: step {i + 1}/{steps} ({(i + 1) / steps * 100:.0f}%)")
await asyncio.sleep(duration_seconds / steps)
# Calculate results
end_time = time.time()
actual_duration = end_time - start_time
# Log completion
await context.log.info(f"Completed operation: {operation_name} in {actual_duration:.2f}s")
return {
"operation": operation_name,
"expected_duration": duration_seconds,
"actual_duration": round(actual_duration, 2),
"start_time": start_time,
"end_time": end_time,
}
@app.tool
async def error_handling_example(
context: Context,
should_fail: Annotated[bool, "Whether to simulate an error"],
error_type: Annotated[str, "Type of error to simulate"] = "ValueError",
) -> Annotated[dict, "Result or error details"]:
"""Demonstrate error logging and handling."""
try:
await context.log.debug(f"Error handling test: should_fail={should_fail}")
if should_fail:
if error_type == "ValueError":
raise ValueError("This is a simulated value error") # noqa: TRY301
elif error_type == "KeyError":
raise KeyError("missing_key") # noqa: TRY301
elif error_type == "ZeroDivisionError":
result = 1 / 0
return {"result": result}
else:
raise Exception(f"Generic error of type: {error_type}") # noqa: TRY002, TRY301
# Success case
await context.log.info("Operation completed successfully")
except Exception as e:
# Log the error with details
await context.log.error(f"Operation failed with {type(e).__name__}: {e!s}")
# Log traceback separately at debug level
await context.log.debug(f"Traceback:\n{traceback.format_exc()}")
return {
"status": "error",
"error_type": type(e).__name__,
"error_message": str(e),
"handled": True,
}
else:
return {"status": "success", "message": "No errors occurred"}
@app.tool
async def structured_logging(
context: Context,
user_action: Annotated[str, "Action the user is performing"],
metadata: Annotated[dict | None, "Additional metadata to log"] = None,
) -> Annotated[str, "Confirmation message"]:
"""Demonstrate structured logging patterns."""
# Log main action
await context.log.info(
f"User action: {user_action} (user_id: {context.user_id or 'anonymous'})"
)
# Log additional details at debug level
await context.log.debug(
f"Context details: {len(context.secrets) if context.secrets else 0} secrets available"
)
# Log metadata if provided
if metadata:
await context.log.debug(f"Custom metadata: {metadata}")
return f"Logged user action: {user_action}"
@app.tool
async def batch_processing_logs(
context: Context,
items: Annotated[list[str], "Items to process"],
fail_on_item: Annotated[Optional[str], "Item that should fail"] = None,
) -> Annotated[dict, "Processing results with detailed logs"]:
"""Process items with detailed logging for each step."""
results: dict[str, list] = {"successful": [], "failed": []}
await context.log.info(f"Starting batch processing of {len(items)} items")
for i, item in enumerate(items):
try:
# Log item start
await context.log.debug(f"Processing item {i + 1}/{len(items)}: {item}")
# Simulate failure if requested
if item == fail_on_item:
raise ValueError(f"Simulated failure for item: {item}") # noqa: TRY301
# Simulate processing
await asyncio.sleep(0.1)
results["successful"].append(item)
except Exception as e:
await context.log.warning(f"Failed to process '{item}': {e!s}")
results["failed"].append({"item": item, "error": str(e)})
# Log summary
await context.log.info(
f"Batch processing complete: {len(results['successful'])} successful, "
f"{len(results['failed'])} failed",
)
return results
if __name__ == "__main__":
# Run the server
app.run(host="127.0.0.1", port=8000)
Logging Features
1. Log Levels
MCP supports standard log levels:
await context.log.debug("Detailed debugging information")
await context.log.info("General information")
await context.log.warning("Warning messages")
await context.log.error("Error messages")
2. Structured Logging
Log with context and metadata:
# Include user context
await context.log.info(
f"Action performed by user: {context.user_id}"
)
# Add operation details
await context.log.debug(
f"Processing {item_count} items with options: {options}"
)
3. Error Logging
Proper error handling and logging:
try:
# Operation that might fail
result = risky_operation()
except Exception as e:
# Log error with type and message
await context.log.error(
f"Operation failed: {type(e).__name__}: {str(e)}"
)
# Log traceback at debug level
await context.log.debug(
f"Traceback:\n{traceback.format_exc()}"
)
4. Progress Logging
Track long-running operations:
for i, item in enumerate(items):
# Log progress
await context.log.debug(
f"Progress: {i+1}/{len(items)} ({(i+1)/len(items)*100:.0f}%)"
)
# Process item
process(item)
5. Batch Processing
Log batch operations effectively:
# Log batch start
await context.log.info(f"Starting batch of {count} items")
# Log individual items at debug level
for item in items:
await context.log.debug(f"Processing: {item}")
# Log summary
await context.log.info(
f"Batch complete: {success_count} successful, {fail_count} failed"
)
Best Practices
- Use Appropriate Levels: Debug for details, info for general flow, warning for issues, error for failures
- Include Context: Always include relevant context like user ID, operation names, counts
- Structure Messages: Use consistent message formats for easier parsing
- Handle Errors Gracefully: Log errors with enough detail to debug but not expose sensitive data
- Progress Updates: For long operations, provide regular progress updates
- Batch Summaries: For batch operations, log both individual items (debug) and summaries (info)
- Performance Considerations: Be mindful of log volume in production environments